top of page


A Community For Dads.

Juneau is an online platform for dads to learn from each other and share resources on parenting. 


TIME FRAME: 10 weeks (January 2019 - March 2018)

KEY CONTRIBUTIONS: Usability testing, interface design, 2D fabrication, lesson plan design

INDUSTRY SPONSOR: Microsoft Education

CLASS: Prototyping Studio, MHCI+D Program

TEAM: Samantha Baker, Beijia Wang


Planting Stems //

Hacking STEM

Planting Stems uses physical computing and data visualization to teach students about the greenhouse effect.

A low cost, hands-on science lesson for middle schoolers.

scroll for more

The Problem

Microsoft Education's Hacking STEM projects aim to build affordable inquiry and project-based activities to visualize data across the STEM curriculum. We were tasked with developing a new lesson plan that:

  1. Cost under $10 a student

  2. Met Next Generation Science Standards (NGSS)

  3. Incorporated physical computing and data visualization

The Solution

Planting Stems uses Arduinos + temperature and humidity sensors to allow kids to monitor plant growth over time in three different environments: open air, greenhouse, and "climate change" (added CO2). 


Inclusive of all types of students



A hands-on way to build scientific instruments


Uses cheap, everyday materials.



Ideation & Research

Secondary Research

We set off to learn more about NGSS. Since it had been a while since we were all in middle school, we also took some time to look at what a "normal" lesson plan looked like in terms of timing, difficulty level, concepts covered etc. As a group, we generated ten lesson plan ideas that met certain NGSS standards. After reviewing the lesson plans that Microsoft has already had, which were largely physics based, we were inspired to tackle a biology lesson and landed on building a lesson plan around teaching students about the greenhouse effect.


Explain basic idea.

Since our two most important stakeholders for this program would be teachers and students, we set out to prototype and test with both groups.



After outlining a rough lesson plan idea, we did our first prototyping session with University of Washington's KidsTeam, a participatory design initiative in the Information School's Digital Youth Lab. We went into the session with a few questions and goals:

1) Gauge the general background knowledge level of the students.

     - What have they learned about plants in school?

     - Are they familiar with the general processes of the life cycle of         plants?

2) Is the experiment interesting to them? Are they excited?

3) Is our method of teaching the core concepts engaging? 

We had the students run through the process of "planting" their seeds in the plastic bags as we asked them various questions.

From this we learned that​ the kids, who were even younger than our target audience, actually knew a lot about plants already. They could tell us that humans breathe air and plants "breathe" carbon dioxide, and some of them had even grown plants before. That gave us confidence that we could up the complexity of the experiment and kids could likely follow. The students were also really excited about growing something but impatient about seeing progress. We left the session with the following questions, and then set out to do further testing.




Is there a way to speed up the process to make the experiment more engaging?

Will students be able to make the conceptual jump from the physical world to the data they will see?

How do we make sure the lesson plan is accessible to all students with varying degrees of background knowledge?


We knew that no science experiment would work if it didn't work for teachers. We were interested in hearing about how the realities of the classroom may come into play with our concept.

We spent a week mocking up various low-fidelity data visualization ideas together. To speed up the process we made them in Sketch and then simply simulated the graph movements by flipping through the static screens on our laptop.


[insert GIFS of low-fi versions]

My teammate finalized the Arduino code to get our sensors up and running and we then spent the following two weeks conducting 5 prototyping sessions with teachers with our low-fidelity data visualizations and a rough draft of our lesson plan, each taking turns being lead facilitator.


Their feedback was invaluable in shaping our subsequent versions of both the lesson plan and the data visualization. 




With this feedback in mind, we were able to craft our final lesson plan and move our Illustrator prototype into Processing.

Students Round 2

Our final KidsTeam session presented us the opportunity to do a full test of our instruction booklet. Due to some complexities in how our Arduino sensors were coming together, our final schematic ended up looking pretty complicated and we were a bit worried about student's successfully wiring everything, and knew student's would likely need to be able to do this successfully in under 30 minutes for a typical class to stay on schedule.


We watched the students follow our instruction booklet and build the Arduino circuits. The students were faster and more proficient than we had guessed and it was exciting to see them so engaged in the activity.

We saw late in the rpocess that they had mixed up the Power/grnd lines, a common mistake even for adults, and had to correct them.

>potentiometer to measure growth

In our final version, we rewired the entire breadboard and put the two lines on opposite sides of the board to ensure that the mistake was less likely to occur since it would be difficult for a teacher to diagnose what had happened if this occurred and the student's sensors subsequently got fried in the process.

Final Lab Demo

For our presentations at Microsoft, each group was asked to craft a high fidelity lab demo version of their experiment. We elected to laser cut clear acrylic to form unique plant containers in place of plastic bags, as well as an Arduino enclosure.

bottom of page